Модули

Формат данных JSON в Python

Краткое руководство по использованию JSON в Python

JSON (JavaScript Object Notation) это легковесный формат обмена данными. Людям его легко читать и вести в нем записи, а компьютеры запросто справляются с его синтаксическим анализом и генерацией.

JSON основан на языке программирования JavaScript. Но этот текстовый формат не зависит от языка и среди прочих может использоваться в Python и Perl. В основном его применяют для передачи данных между сервером и веб-приложением.

JSON построен на двух структурах:

  • Набор пар «имя-значение». Они могут быть реализованы как объект, запись, словарь, хеш-таблица, список «ключей-значений» или ассоциативный массив.
  • Упорядоченный список значений. Его реализуют в виде массива, вектора, списка или последовательности.

JSON в Python

В Python есть ряд пакетов, поддерживающих JSON, в частности metamagic.jsonjysonsimplejsonYajl-Pyultrajson, и json. В этом руководстве мы будем использовать json, имеющий «родную» поддержку в Python. Для проверки данных JSON мы можем воспользоваться этим сайтом, предоставляющим JSON-линтер.

Ниже приведен пример записи JSON. Как видим, представление данных очень похоже на словари Python.

{
 "article": [
  {
   "id": "01",
   "language": "JSON",
   "edition": "first",
   "author": "Derrick Mwiti"
  },
  {
   "id": "02",
   "language": "Python",
   "edition": "second",
   "author": "Derrick Mwiti"
  }
 ],
 "blog": [
  {
   "name": "Datacamp",
   "URL": "datacamp.com"
  }
 ]
}

Конвертируем JSON в объекты Python

Вышеуказанную JSON-строку мы можем спарсить при помощи метода json.loads() из модуля json. В итоге получим словарь Python.

import json
my_json_string = """{
   "article": [

      {
         "id":"01",
         "language": "JSON",
         "edition": "first",
         "author": "Derrick Mwiti"
      },

      {
         "id":"02",
         "language": "Python",
         "edition": "second",
         "author": "Derrick Mwiti"
      }
   ],

   "blog":[
   {
       "name": "Datacamp",
       "URL":"datacamp.com"
   }
   ]
}
"""
to_python = json.loads(my_json_string)
to_python['blog']
[{'URL': 'datacamp.com', 'name': 'Datacamp'}]

Конвертируем объекты Python в JSON

Используя json.dumps(), мы можем сконвертировать объекты Python в формат JSON.

blog = {'URL': 'datacamp.com', 'name': 'Datacamp'}
to_json= json.dumps(blog)
to_json
'{"URL": "datacamp.com", "name": "Datacamp"}'

Теперь давайте сравним типы данных в Python и JSON.

Python JSON
dict Object
list Array
tuple Array
str String
int Number
float Number
True true
False false
None null

Ниже мы покажем, как сконвертировать некоторые объекты Python в типы данных JSON.

Кортеж Python — в массив JSON

tuple_example = 'Mango', 'Banana', 'Apple'
print(json.dumps(tuple_example))
["Mango", "Banana", "Apple"]

Список Python — в массив JSON

list_example = ["Mango", 1, 3, 6, "Oranges"]
print(json.dumps(list_example))
["Mango", 1, 3, 6, "Oranges"]

Строка Python — в строку JSON

string_example = "This is a cool example."
print(json.dumps(string_example))
"This is a cool example."

Булевы значения Python — в булевы значения JSON

boolean_value = False
print(json.dumps(boolean_value))
false

Запись в файл JSON

Модуль json позволяет также записывать данные JSON в файл. Такие файлы сохраняют с расширением .json.

Давайте посмотрим, как это сделать. Для этого воспользуемся функцией open() с параметром w, сигнализирующим о том, что мы хотим записать в файл.

my_json_string = """{
   "article": [

      {
         "id":"01",
         "language": "JSON",
         "edition": "first",
         "author": "Derrick Mwiti"
      },

      {
         "id":"02",
         "language": "Python",
         "edition": "second",
         "author": "Derrick Mwiti"
      }
   ],

   "blog":[
   {
       "name": "Datacamp",
       "URL":"datacamp.com"
   }
   ]
}
"""
with open('test_file.json', 'w') as file:
    json.dump(my_json_string, file)

Чтение файлов JSON

Теперь продемонстрируем, как прочитать только что созданный нами файл JSON. Для его загрузки вызовем json.load().

with open('test_file.json', 'r') as j:
    json_data = json.load(j)
    print(json_data)
{
   "article": [

      {
         "id":"01",
         "language": "JSON",
         "edition": "first",
         "author": "Derrick Mwiti"
      },

      {
         "id":"02",
         "language": "Python",
         "edition": "second",
         "author": "Derrick Mwiti"
      }
   ],

   "blog":[
   {
       "name": "Datacamp",
       "URL":"datacamp.com"
   }
   ]
}

json.load vs json.loads

json.load используют для загрузки файла, а json.loads – для загрузки строки (loads расшифровывается как «load string»).

json.dump vs json.dumps

Аналогично, json.dump применяется, если нужно сохранить JSON в файл, а json.dumps (dump string) – если данные JSON нам нужны в виде строки для парсинга или вывода.

Работа с данными JSON в Data Science

Иногда при работе над проектами, связанными с data science, требуется загрузить данные в формате JSON. Библиотека для анализа данных Pandas предоставляет для этого функцию .read_json. Как только данные загружены, мы конвертируем их в объект dataframe при помощи атрибута pandas.DataFrame.

import pandas as pd
data = pd.read_json("https://api.github.com/users")
df = pd.DataFrame(data)
df

Ограничения имплементации

Процесс кодирования в JSON называется сериализацией, а декодирования – десериализацией. Некоторые реализации десериализаторов имеют ограничения на:

  • размер принимаемых текстов JSON
  • максимальный уровень вложенности объектов и массивов JSON
  • диапазон точности чисел JSON
  • содержание и максимальную длину строк JSON.

Впрочем, подобные ограничения связаны только с типами данных Python и работой самого интерпретатора Python.

Формат JSON в разработке API

Одно из важнейших применений JSON – для разработки API в веб-приложениях. Этот формат очень полезен, ведь позволяет коллегам-разработчикам строить систему на основе наших API, используя любой язык, поддерживающий JSON. А такой поддержкой обладают практически все современные языки. На простом примере покажем, как вернуть JSON при разработке приложения на Python с фреймворком Flask. Flask предоставляет для этого модуль jsonify.

from flask import jsonify


@app.route('/_get_current_user')
def get_current_user():
    return jsonify(username=g.user.username,
                   email=g.user.email,
                   id=g.user.id)

Эта программа отправит в браузер что-то вроде следующего:

{
 "username": "Derrick Mwiti",
 "email": "myemail@gmail.com",
 "id": 1
}
{'email': 'myemail@gmail.com', 'id': 1, 'username': 'Derrick Mwiti'}

Заключение

В этом уроке мы сделали небольшое введение в особенности работы с JSON в Python. Рассмотрели использование различных методов из модуля json, таких как json.load и json.dumps. Кроме того, мы разобрали, как загрузить данные в формате JSON для работы в проектах data science и как возвращать JSON при разработке API. Узнать больше о модуле json можно на его официальной странице на сайте Python.

Dmytro

Recent Posts

Сборка мусора в Python: ключевые концепции и механизмы

Управление памятью - важный, но часто упускаемый из виду аспект программирования. При неправильном подходе оно…

6 дней ago

Круговой импорт в Python и как его избежать

Как возникает круговой импорт? Эта ошибка импорта обычно возникает, когда два или более модуля, зависящих…

2 недели ago

Библиотека tqdm: визуализация прогресса выполнения скриптов Python

Вы когда-нибудь оказывались в ситуации, когда скрипт на Python выполняется очень долго и вы задаетесь…

3 недели ago

Символы новой строки в Python

В этом руководстве мы разберем все, что нужно знать о символах перехода на новую строку…

2 месяца ago

if __name__ == «__main__» в Python: полное объяснение

Блок if __name__ == "__main__" в Python позволяет определить код, который будет выполняться только при…

2 месяца ago

Как писать модульные тесты для методов экземпляра в Python

Давайте разберем, как настроить модульные тесты для экземпляров классов. Мы напишем тесты для проверки функциональности…

4 месяца ago