Машинное обучение (ML) и искусственный интеллект (AI) все шире распространяются в различных сферах деятельности, и многие предприятия начинают активно инвестировать в эти технологии. С ростом объемов и сложности данных, повышается необходимость их обработки и анализа при помощи ML и АI. Искусственный интеллект дает гораздо более точные оценки и прогнозы, которые заметно повышают эффективность, увеличивают производительность и снижают расходы.
AI и ML проекты сильно отличаются от обычных проектов разработки ПО. При работе над ними используется другой технологический стек, нужны навыки машинного обучения и готовность заниматься глубокими исследованиями. Чтобы заложить основу МL и AI проекта, вам нужно выбрать гибкий и при этом стабильный язык программирования с большим количеством готовых библиотек и фреймворков. Python как раз один из таких языков, и не удивительно, что на нем ведется большое количество AI и ML проектов. Ниже мы расскажем вам про топ-8 библиотек Python, которые могут быть использованы для AI и ML.
Почему Python предпочтителен для машинного обучения и AI?
Python поддерживает разработчиков на протяжении всего цикла программной разработки, что ведет к высокой продуктивности разработки и дает уверенность в ее конечном результате. Python имеет много достоинств, имеющих большое значение при разработке проектов, связанных с AI и ML.
К ним можно отнести:
- встроенные библиотеки
- пологая кривая изучения
- простота интеграции
- легкость в создании прототипов
- открытый код
- объектно-ориентированная парадигма
- переносимость
- высокая производительность
- платформонезависимость
Именно эти свойства еще больше повышают популярность языка. Огромное количество Python-библиотек для AI и ML существенно упрощают и ускоряют разработку. Простой синтаксис и читаемость способствуют быстрому тестированию сложных процессов и делают язык понятным для всех. Например, в контексте веб-разработки в качестве конкурента Python можно рассматривать PHP, но найти PHP-программистов с опытом работы в проектах ML и AI очень сложно.
Лучшие библиотеки Python для машинного обучения и AI
Для реализации алгоритмов ML и AI необходимо хорошо структурированное и проверенное окружение — только так можно достичь наилучших результатов. Многочисленные библиотеки Python, предназначенные для машинного обучения, позволяют существенно сократить время создания проектов. Давайте познакомимся с лучшими из них.
1. Tensor Flow
TensorFlow — библиотека сквозного машинного обучения Python для выполнения высококачественных численных вычислений. С помощью TensorFlow можно построить глубокие нейронные сети для распознавания образов и рукописного текста и рекуррентные нейронные сети для NLP(обработки естественных языков). Также есть модули для векторизации слов (embedding) и решения дифференциальных уравнений в частных производных (PDE). Этот фреймворк имеет отличную архитектурную поддержку, позволяющую с легкостью производить вычисления на самых разных платформах, в том числе на десктопах, серверах и мобильных устройствах.
Основной козырь TensorFlow это абстракции. Они позволяют разработчикам сфокусироваться на общей логике приложения, а не на мелких деталях реализации тех или иных алгоритмов. С помощью этой библиотеки разработчики Python могут легко использовать AI и ML для создания уникальных адаптивных приложений, гибко реагирующих на пользовательские данные, например на выражение лица или интонацию голоса.
2. Keras
Keras — одна из основных библиотек Python с открытым исходным кодом, написанная для построения нейронных сетей и проектов машинного обучения. Keras может работать совместно с Deeplearning4j, MXNet, Microsoft Cognitive Toolkit (CNTK), Theano или TensorFlow. В этой библиотеке реализованы практически все автономные модули нейронной сети, включая оптимизаторы, нейронные слои, функции активации слоев, схемы инициализации, функции затрат и модели регуляризации. Это позволяет строить новые модули нейросети, просто добавляя функции или классы. И поскольку модель уже определена в коде, разработчику не приходится создавать для нее отдельные конфигурационные файлы.
Keras особенно удобна для начинающих разработчиков, которые хотят проектировать и разрабатывать собственные нейронные сети. Также Keras можно использовать при работе со сверточными нейронными сетями. В нем реализованы алгоритмы нормализации, оптимизации и активации слоев. Keras не является ML-библиотекой полного цикла (то есть, исчерпывающей все возможные варианты построения нейронных сетей). Вместо этого она функционирует как очень дружелюбный, расширяемый интерфейс, увеличивающий модульность и выразительность (в том числе других библиотек).
3. Theano
С момента своего появления в 2007 году, Theano привлекла разработчиков Python и инженеров ML и AI.
По своей сути, это научная математическая библиотека, которая позволяет вам определять, оптимизировать и вычислять математические выражения, в том числе и в виде многомерных массивов. Основой большинства ML и AI приложений является многократное вычисление заковыристых математических выражений. Theano позволяет вам проводить подобные вычисления в сотни раз быстрее, вдобавок она отлично оптимизирована под GPU, имеет модуль для символьного дифференцирования, а также предлагает широкие возможности для тестирования кода.
Когда речь идет о производительности, Theano — отличная библиотека ML и AI, поскольку она может работать с очень большими нейронными сетями. Ее целью является снижение времени разработки и увеличение скорости выполнения приложений, в частности, основанных на алгоритмах глубоких нейронных сетей. Ее единственный недостаток — не слишком простой синтаксис (по сравнению с TensorFlow), особенно для новичков.
4. Scikit-learn
Scikit-learn — еще одна известная опенсорсная библиотека машинного обучения Python, с широким спектром алгоритмов кластеризации, регрессии и классификации. DBSCAN, градиентный бустинг, случайный лес, SVM и k-means — вот только несколько примеров. Она также отлично взаимодействует с другими научными библиотеками Python, такими как NumPy и SciPy.
Эта библиотека поддерживает алгоритмы обучения как с учителем, так и без учителя. Вот список основных преимуществ данной библиотеки, делающих ее одной из самых предпочтительных библиотек Python для ML:
- снижение размерности
- алгоритмы, построенные на решающих деревьях (в том числе стрижка и индукция)
- построение решающих поверхностей
- анализ и выбор признаков
- обнаружение и удаление выбросов
- продвинутое вероятностное моделирование
- классификация и кластеризация без учителя
5. PyTorch
Вы когда-нибудь задумывались, почему PyTorch стала одной из самых популярных библиотек Python по машинному обучению?
PyTorch — это полностью готовая к работе библиотека машинного обучения Python с отличными примерами, приложениями и вариантами использования, поддерживаемая сильным сообществом. PyTorch отлично адаптирована к графическому процессору (GPU), что позволяет использовать его, например в приложениях NLP (обработка естественных языков). Вообще, поддержка вычислений на GPU и CPU обеспечивает оптимизацию и масштабирование распределенных задач обучения как в области исследований, так и в области создания ПО. Глубокие нейронные сети и тензорные вычисления с ускорением на GPU — две основные фишки PyTorch. Библиотека также включает в себя компилятор машинного обучения под названием Glow, который серьезно повышает производительность фреймворков глубокого обучения.
6. NumPy
NumPy — это библиотека линейной алгебры, разработанная на Python. Почему большое количество разработчиков и экспертов предпочитают ее другим библиотекам Python для машинного обучения?
Практически все пакеты Python, использующиеся в машинном обучении, так или иначе опираются на NumPy. В библиотеку входят функции для работы со сложными математическими операциями линейной алгебры, алгоритмы преобразования Фурье и генерации случайных чисел, методы для работы с матрицами и n-мерными массивами. Модуль NumPy также применяется в научных вычислениях. В частности, он широко используется для работы со звуковыми волнами и изображениями.
7. Pandas
В проектах по машинному обучению значительное время уходит на подготовку данных, а также на анализ основных тенденций и моделей. Именно здесь Pandas привлекает внимание специалистов по машинному обучению. Python Pandas — это библиотека с открытым исходным кодом, которая предлагает широкий спектр инструментов для обработки и анализа данных. С ее помощью вы можете читать данные из широкого спектра источников, таких как CSV, базы данных SQL, файлы JSON и Excel.
Эта библиотека позволяет производить сложные операции с данными помощью всего одной команды. Python Pandas поставляется с несколькими встроенными методами для объединения, группировки и фильтрации данных и временных рядов. Но Pandas не ограничивается только решением задач, связанных с данными; он служит лучшей отправной точкой для создания более сфокусированных и мощных инструментов обработки данных.
8. Seaborn
Наконец, последняя библиотека в нашем списке это Seaborn — бесподобная библиотека визуализации, основанная на Matplotlib. Для проектов машинного обучения важны и описание данных, и их визуализация, поскольку для выбора подходящего алгоритма часто бывает необходим зондирующий анализ набора данных. Seaborn предлагает высокоуровневый интерфейс для создания потрясающей статистической графики на основе набора данных.
С помощью этой библиотеки машинного обучения легко создавать определенные типы графиков, такие как временные ряды, тепловые карты (heat map) и графики «скрипками» (violin plot). По функционалу Seaborn превосходит Pandas и MathPlotLib — благодаря функциям статистической оценки данных в процессе наблюдений и визуализации пригодности статистических моделей для этих данных.
Ниже в таблице приведены данные по этим библиотекам из GitHub:
Эти библиотеки чрезвычайно полезны, когда вы работаете над проектами машинного обучения, поскольку они экономят ваше время и дополнительно предоставляют явные функции, на которые можно смело опираться. Среди огромной коллекции библиотек Python для машинного обучения эти библиотеки следует рассмотреть в первую очередь. С их помощью вы сможете вы можете использовать высокоуровневые аналитические функции даже при минимальных знаниях базовых алгоритмов, с которыми вы работаете.