Как транспонировать матрицу в Python

Перевод статьи «Transpose a Matrix».

Сегодня мы хотим разобрать, как транспонировать матрицу в Python. Однако сначала давайте рассмотрим, что представляет из себя матрица сама по себе и в чём заключается процесс транспонирования.

Итак, матрица состоит из строк и столбцов. Создать матрицу можно по-разному, но самый простой способ – использовать вложенные списки, как показано ниже:

matrix = [[1, 2, 4], [31, 17, 15]]

Внутренние списки представляют собой строки, а каждый элемент внутри списка называется столбцом. Итак, в приведенном выше примере у нас есть две строки и три столбца, т.е. мы имеем дело с матрицей 2 на 3. Стоит помнить, что индексация Python начинается с нуля.

Транспонирование матрицы означает, что мы меняем строки на столбцы или столбцы на строки. Теперь давайте обсудим различные методы транспонирования матрицы.

Метод 1. Транспонирование матрицы с помощью NumPy transpose()

Первый метод, который мы разберем, — это использование библиотеки NumPy. NumPy в основном работает с массивами в Python, а для транспонирования мы можем вызвать метод transpose().

Давайте разберем всё по порядку. Для начала нам нужно импортировать модуль NumPy как np.

Дальше, в ячейке номер [25] мы создаем массив NumPy с именем arr_matrix.

В ячейке номер [26] мы вызываем метод transpose() для нашей матрицы – объекта arr_matrix, который мы создали ранее.

В ячейке номер [27] мы выводим на экран исходную матрицу arr_matrix.

А в ячейке номер [28] – транспонированную матрицу arr_transpose. Можем заметить, что в результате мы получили именно то, что нам было нужно – транспонированную матрицу.

Метод 2. Использование метода numpy.transpose()

Мы также можем транспонировать матрицу в Python с помощью numpy.transpose(). При этом мы передаем матрицу в метод transpose() в качестве аргумента.

В ячейке номер [29] мы создаем матрицу, используя массив NumPy, с именем arr_matrix.

Далее мы передаем arr_matrix в метод transpose() и сохраняем результат в новую переменную arr_transpose.

В ячейке номер [31] мы печатаем исходную матрицу arr_matrix.

А дальше мы выводим на экран транспонированную матрицу arr_transpose. Получаем результат аналогичный тому, что получили в первом примере.

Метод 3. Транспонирование матрицы с использованием библиотеки SymPy

Применение библиотеки SymPy – это еще один подход к транспонированию матрицы. Эта библиотека использует символьную математику для решения алгебраических задач.

Сначала нам, конечно же, нужно импортировать библиотеку SymPy. Она не поставляется вместе с Python по умолчанию, поэтому вы должны установить её в своей системе, иначе код не будет работать.

В ячейке номер [34] мы создаем матрицу с помощью библиотеки sympy.

Дальше, в ячейке [35], мы вызываем transpose (T) при помощи точечного оператора и сохраняем результаты в новую переменную sympy_transpose.

В ячейке номер [36] мы печатаем исходную матрицу matrix. А в ячейке номер [37] – транспонированную матрицу sympy_transpose. Как видим, у нас получилась транспонированная матрица.

Метод 4. Транспонирование матрицы с использованием вложенного цикла

В Python матрицу можно транспонировать и без применения каких-либо библиотек. Для этого нам придется использовать вложенные циклы.

Мы создаем одну матрицу, а затем вторую (того же размера, что и первая) — для сохранения результатов после транспонирования. При этом важно отметить, что мы далеко не всегда знаем размерность исходной матрицы. Поэтому матрицу для результата мы создаем не напрямую, а используя размер исходной.

В ячейке номер [38] мы создаем матрицу и выводим ее на экран.

В следующей ячейке мы применяем «питонический» способ узнать размерность транспонированной матрицы, используя исходную. А именно — используем генератор списков со вложенными циклами for.

В ячейке [40] мы запускаем два цикла for. Внешний цикл предназначен для строк, а вложенный – для столбцов.

В ячейке номер [41] мы выводим исходную матрицу Matrix. А в ячейке [42] — транспонированную матрицу trans_Matrix.

Метод 5. Использование генератора списка

Следующий метод, который мы разберем, — это использование генератора списка. Этот метод похож на предыдущий с использованием вложенных циклов, но он более «питонический». Можно сказать, что это более продвинутый способ транспонирования матрицы в одной строке кода без использования библиотек.

Сначала мы создаем матрицу m, используя вложенные списки.

Затем в ячейке номер [44] мы используем вложенные циклы, как и в предыдущем примере. Однако здесь мы делаем это в одну строчку, используя генератор списков. Более того, тут нет никакой необходимости менять индексы [j] [i] местами, как мы это делали в предыдущий раз.

В следующей ячейке мы выводим исходную матрицу m. После этого в ячейке номер [42] выводим транспонированную матрицу trans_m. Как видим, желаемый результат получен.

Метод 6. Транспонирование матрицы с помощью pymatrix

Pymatrix – ещё одна облегченная библиотека для матричных операций в Python. Мы можем выполнить транспонирование и с её помощью.

В ячейке номер [43] мы импортируем библиотеку pymatrix. Она не поставляется вместе с Python по умолчанию, поэтому, чтобы код работал корректно, нужно установить ее в своей системе перед использованием.

Затем при помощи библиотеки pymatrix мы создаем матрицу (в ячейке [44]).

В ячейке номер [45] вызываем метод trans() для нашей матрицы и сохраняем результаты в новую переменную pymatrix_transpose.

Потом мы выводим на экран исходную матрицу matrix. А в ячейке номер [47] выводим уже транспонированную матрицу pymatrix_transpose. Как видим, код отработал правильно.

Метод 7. Использование метода zip

Zip – еще один метод транспонирования матрицы.

В ячейке номер [63] мы создаем новую матрицу, используя вложенные списки.

В ячейке номер [64] мы передаем матрицу в zip с помощью оператора *. Мы вызываем каждую строку, а затем преобразуем эту строку в новый список, который становится транспонированной матрицей.

Заключение

Итак, сегодня мы рассмотрели, как транспонировать матрицу в Python. Мы разобрали различные методы, которые могут помочь нам в транспонировании матрицы (с использованием библиотек и без них).

Мы также познакомились с несколькими новыми библиотеками, такими как pymatrix и sympy.

Надеемся, теперь у вас не осталось вопросов о том, как транспонировать матрицу. Более того, вы можете выбрать наиболее подходящий способ для решения этой задачи.