Python предоставляет множество встроенных (built-in) функций, которые предопределены и могут использоваться конечным пользователем, просто вызывая их. Эти функции не только облегчают работу программистов, но и создают стандартную среду программирования. В этой статье вы узнаете о трех таких впечатляющих функциях, как map(), filter() и reduce() в Python.
Итак, начнем.
Что такое функции map(), filter() и reduce() в Python?
Как упоминалось ранее, map(), filter() и reduce() являются встроенными функциями Python. Эти функции обеспечивают функциональный программный аспект Python. В функциональном программировании передаваемые аргументы являются единственными факторами, которые определяют результат. Эти функции могут принимать любую другую функцию в качестве параметра и могут быть переданы другим функциям в качестве параметров.
Также у нас уже выходила статья на тему того, как функции map(), filter() и reduce() могут улучшить ваш код в Python.
Функция map():
Функция map() является типом высшего порядка. Как упоминалось ранее, эта функция принимает другую функцию в качестве параметра вместе с итерируемой последовательностью и возвращает выходные данные после применения функции на каждый итерируемый элемент из последовательности. Синтаксис выглядит следующим образом:
map(function, iterables)
Здесь функция определяет выражение, которое в свою очередь применяется к итерируемым элементам. Функция map может принимать функции, которые определил сам пользователь, а также лямбда-функции в качестве параметра.
Помимо того, мы писали уже про задачу, как можно сконвертировать список с применением функции map().
Совместное использование с функциями, определяемыми пользователем и Lambda-функциями:
Пользовательские функции совместно с map():
Функция map() может принимать пользовательские функции в качестве параметров. Параметры этих функций устанавливаются исключительно пользователем или программистом.
Пример:
def newfunc(a): return a*a x = map(newfunc, (1,2,3,4)) # x - это объект типа map print(x) print(set(x))
Результат:
<map object at 0x00000284B9AEA940> [1, 4, 9, 16]
Вы также можете передать несколько списков в качестве параметров.
Пример:
def func(a, b): return a + b a = map(func, [2, 4, 5], [1,2,3]) print(a) print(tuple(a))
Результат:
<map object at 0x00000284B9BA1E80> (3, 6, 8)
Теперь давайте посмотрим, как вы можете использовать lambda-функции внутри map().
Lambda-функции совместно с map():
Lambda-функции — это функции, которые являются анонимными и им не нужно указывать какое-то собственное имя, как это происходит с пользовательскими функциями. Эти функции часто передаются в качестве параметров другим функциям.
Теперь давайте попробуем применить lambda-функции совместно с функцией map(). Рассмотрим следующий пример:
tup = (5, 7, 22, 97, 54, 62, 77, 23, 73, 61) newtuple = tuple(map(lambda x: x+3 , tup)) print(newtuple)
Результат:
(8, 10, 25, 100, 57, 65, 80, 26, 76, 64)
Приведенный выше вывод является результатом применения lambda-выражения (x + 3) к каждому элементу, присутствующему в кортеже.
Функция filter():
Функция filter() используется для создания списка, состоящего из значений, для которых функция возвращает true. Синтаксис этого следующий:
filter(function, iterables)
Так же, как и map(), эта функция может использовать в качестве параметра пользовательские функции, а также lambda-функции.
Пример:
def func(x): if x>=3: return x y = filter(func, (1,2,3,4)) print(y) print(list(y))
Результат:
<filter object at 0x00000284B9BBCC50> [3, 4]
Как видите, y — это объект типа функции filter, а выходной список — это список значений, которые являются истинными для условия (x>=3).
Использование lambda-функций совместно с filter():
Lambda-функция, которая используется в качестве параметра, фактически определяет условие, которое необходимо проверить.
Пример:
y = filter(lambda x: (x>=3), (1,2,3,4)) print(list(y))
Результат:
[3, 4]
Приведенный выше код выдает тот же результат, что и предыдущая функция.
Функция reduce():
Функция reduce(), как можно понять из названия, применяет переданную функцию к итерируемому объекту и возвращает одно значение.
Синтаксис:
reduce(function, iterables)
Здесь функция определяет, какое выражение необходимо применить к итерируемому объекту. Эту функцию необходимо импортировать из модуля functools.
Пример:
from functools import reduce reduce(lambda a, b: a + b, [23, 21, 45, 98])
Результат:
187
В приведенном выше примере функция reduce последовательно суммирует каждый элемент из списка и возвращает одно выходное значение.
Функции map(), filter() и reduce() в Python могут использоваться вместе друг с другом.
Совместное использование функций map(), filter() и reduce() functions:
Когда вы совместно друг с другом используете функции, то сначала исполняются внутренние функции, а затем внешние функции обрабатывают результат выполнения внутренних функций.
Пример:
c = map(lambda x:x+x,filter(lambda x: (x>=3), (1,2,3,4))) print(list(c))
Результат:
[6, 8]
Если вы отфильтруете целые числа, большие или равные 3, из данного кортежа, вы получите [3,4] в результате. Затем, если вы примените функцию map к результату вывода предыдущей функции с использованием условия (x + x), то вы получите [6,8] список, который является выходным.
Использование map() внутри filter():
Когда вы используете функцию map() внутри функции filter(), итерации сначала обрабатываются функцией map, а затем к ним применяется условие filter().
Пример:
c = filter(lambda x: (x>=3),map(lambda x:x+x, (1,2,3,4))) print(list(c))
Результат:
[4, 6, 8]
Использование map() и filter() внутри reduce():
Вывод внутренних функций обрабатывается в соответствии с условием, заданным для функции reduce().
Пример:
d = reduce(lambda x,y: x+y,map(lambda x:x+x,filter(lambda x: (x>=3), (1,2,3,4)))) print(d)
Результат:
14
Результатом и выходными данными внутренних функций map() и reduce() является [6,8].
Итак, можно подводить итоги статьи по функциям map(), filter() и reduce() в Python. Я надеюсь, что вы все ясно поняли. Постарайтесь как можно больше практиковаться и применять полученные знания на практике.
Остались какие-то вопросы по теме? Пожалуйста, напишите их в разделе комментариев этой статьи, и мы дадим вам ответ как можно скорее.